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Abstmck The fast use of a vinylimidazole 8s a Dieis-Al&s diea is report&. Semiempirical 
calculatiom am used to chatactezize 1 -~yl-S-v~ylimi~k as an electron-rich diem. 

The preparation and utility of benximidaxole, purine, and caffeine derivatives is well~~~n~.l 
We envisioned that a general approach to the 5,6-fused ring systems related to these compounds could be 
effected by the Die&Alder reaction of approptjately substituted 5vinylimidaxoles.2 While this type of 
reactivity has been observed for the related vinyl-substituted furan, pyrrole,4 pyrazole,5 isoxazole,6 and 
indole ,systems, the [4+2]-cycloaddition of vinylimidazoles as the diene component in the Die&Alder 
reaction has not yet heen documented. With the rich potential for this type of transformation in mind, we 
have begun an investigation of the synthesis and subsequent Diels-Alder reaction of substituted 
vinylimidaxoles. Herein we report the fust successful implementation of this methodology in the case of 5- 
vinyl itnidaxoles. 

Imidaxoles are known IO react with diefieoohiles to give cycloadducts across the 25 positions of the 
heterocyclic ring.8 It was recently shown that 4-vinyl imidazoles with el~~-~~~wing alkenyl 
substitnents could react as w in [4+2] cy&additions with simple dienes.9 In order to estabiish that 
1-protected-S-vinylimidazoles would participate as a in the Dicls-Alder reaction, we prepared the vinyl 
imidaxole derivatives 48 and 4b using simple modifications of syntheses reported in the literature (Scheme 
~10 In both cases, the appropriately protected imidazole (la or lb) was deprotonated (n-BuLVhexanes, 0 
OC) and the resulting anion trapped with tert-butyldimethylsilyl chloride (TBDMSCI) to give the 1,2- 
protected imidazoles 2a and 2b. Formylation of imidazoles 2s and 2b was accomplished using another 
equivalent of n-BuLi Tollowed by quenching of the reaction solution with dimethylformamt ‘de @h@).ll 
Desilylation with n-tetrabutylammonium fluoride (TBAF) in THF afforded the 5-formyl imidaxoles 3a and 
3b.12 The requisite unsaturation was introduced using Wittig ~~ylenati~ &DA, [Ph3PCH333+Br) which 
gave the l-methyl (4a) and l-me~oxy~thyl(4bf S-vinyl imidaxoles in 64 and 80% yields, respectively 
fmm2aand2b. 
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Scheme I 
The S-ethenyl- 1-methylimidaxole (4a) was stirred at -60 Oc in CDC13 solution in the presence of one 

mole equivalent of N-phenylmaleimide (Scheme II). Monitoring of the reaction mixture by NMR over a 24 h 
period revealed the consumption of the two starting materials and the successive formation of two new 
products. After -3.5 hours, 1H NMR showed the reaction mixture to contain a 1.3:1 ratio of starting vinyl 
imidaxole 4a and what has been identified as enamine Ja. Loss of the aromaticity of the imidaxole ring 
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caused the IV-methyl group of this first product (&I) to be shii upfield 0.60 ppm (LH NMR) relative to the 
starting material in which the N-methyl appesmd at 6 3.59. On the basis of selective decoupling experiments 
the multiplets at 6 4.81 and 6 4.52 in this crude spectrum were assigned to the allylic (Hs) and alkenyl @-lb> 
protons in intermediate 54. After the full 24 h ma&on peried none of SI remained The 1H NMR spectrum 
showed evidence of only the 
fully cbamcmrixed. 13 

maromadxed ~~y~~~~~le 6a which was isolated in 41% yield and 

4a-b Sa-b 6a-b 

a) R =CH3 b) R =CH@CH3 

Scheme Il 
Reaction of the 5ethenyl-1-methoxymethylimidazole (4 b) with N-phenylmaleimide in CDC13 

proceeded more sluggishly than the previous reaction (Scheme II). After 26.5 h at -60 Oc the reaction 
mixture contained a 1:3 ratio of the starting vinyl imidaxole and what was assigned as cycloadduct Sb. Only 
after 50 h did the second product begin to appear, and even after 6 days at -60 oC the reaction had not yet 
gone to completion. Work-up of the reaction at this time gave only a 14% yield of the &simd praduct 6b. 
The enamine Sb which had been observed in solution was apparently unstable to chromatography and could 
not be recovered. However, addition of ~-toluenesulf~ic acid @-TsOH) to the initial ma&on mixture was 
found to facilitate in situ inaction of 5b to the final product. In the presence of a catalytic amount ofp 
TsOH. only a trace amount of intermediate Sb was observed (fH NMR) in the reaction mixture after 5 h at 
-60 Oc. Thereafter, only the starting materials and the aromatic product 6b were observed as the reaction 
progressed over 70 h, at which point the desired product Cbb) could be isolated in 41% yield by standard 
work-up and chmmatography.14 

In order to help us better characterize the cycloaddition reactions of this new class of dienes, we 
calculated the HOMO and LUMO energies of 1-methyl-J-vinyl-imidazole 4s using the PM3 semiempirical 
method fTable 1) as implemented in SPARTAN 3.0.15 The HOMO energy of 4a confirms that it is an 
electron-rich diene (cf. 1,3dimethoxybutadiene: HOMO=-8.73235 eV, LUMO&.29557) while the orbital 
coefficients suggest that reactions of polarized dieneophilcs with 4s should not be regioselective.r6 
A~iti~~ly, we computed the transition structures for all four ~~i~iities.~ the reaction of mateimide with 
both diene moieties of 4a; dienes (Cq-Cg-Q-C71 and (Cz-C3-QC5) Figure 1). As was anticipated, the 
lowest energy transition structures were those found for reaction of the dieneophile with the cxocyclic diene 
(C&-C&).” In these cases there was very little preference between the endo- @&=26.592 kcal&nol) 
and exo-modes 7 of cycloaddition (Hf=26.237 kcals/mol) at the PM3 level. Transition structures for the 
reaction of the dieneophile with the endocyclic (Cz-C3-C4C5) diene were both approximately 4 kcals/mol 
higher in energy than the comparable exocyclic diene cases. The endo-mode of cycloaddition 8 @+30.251 
kcals/mol) was slightly favored in this case versus the exo-mode (Ht=31.643 kcals,/mol). 
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Table 1. The HOMO and LUMO Energies and Orbital Coefficients of l-Methyl-S-Vinylimid 4a. 

Energy (eV) 2a 3 4 5 6 7 

LUMO 0.01708 -0.38899 0.08551 0.37973 -0.38452 -0.37236 0.30881 

HOMO -8.88828 0.47232 0.1980 -0.44217 -0.52012 0.27082 0.44468 
a=atom nuinbtr. 4a. 

a=2.198 
b=2.08 1 

7, Hp26.237 kcals/mol 8, H~30.251 kcals/mol 
Fig. 1. Transistion %~CtureS for the ExoCycloaddition Mode of Diene(C+C5-Ctj-C7) (7 , and the Endo- 

Cycloaddition Mode of Diene(CZ-Cg-Cq-Cg) (8) with maleimide (PM3). Distances are in A ngstroms; Black 
bonds represent bonds which were of order two in the ground state. 

This work documents the first successful use of vinyl imidazoles as Diels-Alder dienes. Additionally, 
we have characterized 1-methyl-54nylimidazole as an electron-rich diene using semiempirical calculations. 
We are currently investigating the reaction of this diene and related vinyl imidazoles with unsymmetrically- 
SUbStiNted alkenes in an attempt to both corroborate our theoretical findings and to determine the scqx and 
generality of this process. 
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In a typical procedure 6.2 mL (15.5 mmol) n-BuLi (2.5 M in hexanes) was added to 3.08 g (15.3 
mmol) 2-(terz-butyldimethyl)silyl-I-methylimklazole (2a) in THF (25 mL) at -78 OC. and the mixture 
warmed slowly twan ambient temperature. Four hours after the base was added, the reaction was 
cooled again to -78 DC for the addition of 1.2 mL (15.8 mmol) DMF. The reaction was quenched after 
12 h by adding saturated ammonium chloride, and 2-(tert-butyldimethyl)silyl-5-formyl-l- 
methylimidazole (3.00 g, 88%) we obtained by standard workup. 
The regiochemistry of this acylation was confumed by comparison of the physical and spectroscopic 
properties of 6a with those reported in the literature for 2-formyl-1-methylimi&le: Iversen. P. E.; 
Lund, H. Acta. Chem. Stand. 1966.20, 2649-2657, and 5-formyl-1-methylimidazole Link, H.; 
Bemauer, K. Helv. Chim. Acta. 1972,55, 1053-1062; Jones, R. G. J. Am. Chem. Sot. 1949, 71, 644 
647; Matthews, H. R.; Rapoport, H. J. Am. Chem. Sot. 1973.2297-2303. 
(~):cis-3~~Ja,6,7%~-~hydro~,~diox~3-methyi-7-phenylpy~lo[3~-e]~n~~d~le (mp 
109-112 W); IR (neat) 2931,1712. 1500. 1379. 1177,910,730 cm-l; *H NMR 6 7.36 (m, 3H), 7.39 

(s, lH), 7.22 (m, 2I-Q 4.19 (d, lH, J = 7.7 Hz), 3.51 (m, lH), 3.50 (s, 3H), 2.58 (m, 3H), 1.95 (m, 1H); 
13C NMR 6 177.4. 174.7. 137.4, 131.8, 129.7,128.7, 128.0, 126.7, 126.1,41.3,40.4, 30.8,21-O, 16.8; 
MS m/z (rel intensity) 281 (M+, 53), 207 (7), 161 (8). 133 (lOO), 119 (16), 92 (17). 65 (9). 51 (5); 
Exact mass calcd for Ct&I15N3O2 281.1164, found 281.1162. 
(6b):cis-3,45~a,6,7S~-octahydro-6,&dioxo_3 
benzimidazole IR (neat) 2936, 1711, 1499,1382, 1179. 1102,6% cm-*; 1H NMR 6 7.54 (s, lH), 

7.24 (m, SH), 5.14 (m, W), 4.22 (d, lH, J = 8.1 Hz), 3.53 (m, lH), 3.25 (s, 3H). 2.60 (m, 3H). 2.00 (m. 
1H); 13C NIVIR 6 177.5, 174.8, 138.0, 132.0, 131.1, 129.1, 128.5, 126.9. 126.4.75.9, 56.1,41.4.40.8, 
21.4, 17.2; MS m/z (rel intensity) 311 (M+, 65), 292 (28), 268 (25), 251 (18). 207 (33), 164 (100). 133 
(46), 119(86),91 (27),77 (30); ExactmasscalcdforC~7H~7N~0~311.1270,found311.1277. 
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Transition structures were characterized by their one imaginary (negative) frequency. Animation of 
this frequency in SPARTAN 3.0 showed the motion of atoms to be consistent with the bond-forming 
process. 
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